rayny

sequential functionalization

highly functionalized

quaternary carbon

 R^2 = Me

Sulfoximine Assisted Pd(II)-Catalyzed Bromination and Chlorination of Primary β-C(sp³)–H Bond

Raja K. Rit, M. Ramu Yadav, Koushik Ghosh, Majji Shankar, and Akhila K. Sahoo*

School of Chemistry, University of Hyderabad, Hyderabad-500046, India

S Supporting Information

[ABSTRACT:](#page-3-0) S-Methyl-S-2-pyridyl-sulfoximine (MPyS) directed bromination and chlorination of the $1^{\circ}\text{-}\beta\text{-C(sp^3)}\text{-H}$ bond of MPyS-N-amides is realized under the influence of N-Br/Cl-phthalimides and a Pd(II)-catalyst. The sequential halogenation and acetoxylation of α -dimethyl MPyS-N-amides constructs highly functionalized α -trisubstituted aliphatic acid derivatives. The MPyS directing group is cleaved from the halogenated products and recovered.

D irect functionalization of the remote unactivated C(sp³)–
H bond through C−H activation has a profound impact in
paramic elementary. Of note the installation of a belocan into a irect functionalization of the remote unactivated $C(sp^3)$ – organic chemistry. Of note, the installation of a halogen into a $\tilde{\mathsf{C}}(\mathsf{sp}^3)$ –H bond creates a haloalkane, a versatile motif amenable to a variety of functional group transformations, synthetically useful reactions, 1 and the total synthesis of natural products.² Common functional groups (olefin, -OH, -CO2H and its analogues) 3 are [r](#page-3-0)eadily transformed into halogenated alkane[s,](#page-3-0) while radical reactions of unreactive alkanes generate nonselective [ha](#page-3-0)loalkanes under harsh reaction conditions.⁴ In contrast, a directing group (DG) can control the regioselectivity of the transiti[on](#page-3-0)-metal-catalyzed activation⁵ and halogenation of remote C(sp³)−H bonds, allowing direct access to haloalkanes.^{6,7} Interestingly, prefunctionalization [o](#page-3-0)f the substrate is not required for this method, which broadens its scope and synthetic utility[. T](#page-3-0)herefore, this method offers opportunities for late-stage induction of a halogen into an aliphatic chain, consequently promoting the efficient synthesis of complex molecules.⁸

The Pd(II)-catalyzed oxazoline-directed di-iodination and asymm[e](#page-3-0)tric monoiodination of 1°-C(sp³)−H bonds is exemplary and extensive, $6a-c$ while $C(sp^3)$ – Cl bond formation is limited to benzylic C−H bonds of 8-methyl quinoline, 1°-C(sp³)−H bonds of N-metho[xy a](#page-3-0)mide and 2-tert-butylpyridine.^{6d-f} Despite significant advances in direct C−H halogenation, the bromination and chlorination of aliphatic C−H bonds through [re](#page-3-0)g[i](#page-3-0)oselective activation of remote $\overline{C}(\text{sp}^3)$ –H bonds remains underdeveloped, reinforcing the inherent difficulties associated with these transformations. The specific challenges for effective bromination/ chlorination of $C(sp^3)$ –H bonds are the reductive elimination leading to C-halogen(X) bond formation,⁹ the likelihood of metal insertion into the C−X bond,10 and the facile nucleophilic displacement of the C−X bond (Sche[me](#page-3-0) 1). The concurrent participation of a $Pd(II)/Pd(IV)$ [sp](#page-3-0)ecies would facilitate reductive elimination and minimize oxidative insertion of the Pd species into the newly formed C−X bond of the haloalkane.

Recently, we demonstrated a Pd(II)-catalyzed 1°- β -C(sp³)−H bond acetoxylation of methyl-2-pyridylsulfoximine (MPyS)-Namides at rt.¹¹ Despite the challenges involved in the C(sp³)–H

 $X = Br, Cl$

 $C(sp³)$ -H chlorination and bromination

halogenation

 $Pd(II)$

 \circ

MPyS-DG < reusable

bond halogenation, herein, we showcase the installation of Br/Cl-groups into the 1° -C(sp³)–H bond and sequential functionalization of two β -C(sp³)–H bonds by halogenation and acetoxylation of MPyS-N-amides with the help of MPyS-DG in the presence of a Pd-catalyst.

The investigation was initiated exposing N - $[2,2$ -dimethylpropanoyl]-S-methyl-S-2-pyridylsulfoximine (2a) to Pd-catalysts, brominating/chlorinating agents, and solvents; the results are summarized in Table $1.^{12}$ The reaction between 2a and NBS (Br-1) in Pd(OAc)₂ in AcOH at 60 °C for 15 h led to β -C(sp³)–H bromination product 3a [\(1](#page-3-0)4%, crude $^1\rm H$ NMR) and 36% of the $C(sp^3)$ -acetoxylation c[om](#page-1-0)pound (entry 1),¹² as the reductive eliminations linked to the formation of C−O and C−Br bonds are comparable.^{9d} This preliminary result th[us](#page-3-0) provoked finding

Received: Aug[ust](#page-3-0) 6, 2014 Published: September 30, 2014

^aReactions were carried out with 2a (50 mg, 0.21 mmol) and X^+ (1.0−2.0 equiv) for 15 h. $\frac{b}{b}$ isolated yield. ^c36% acetoxylated product was observed. d_{15} mol % of catalyst was used. $e_{1.5}$ equiv of CuCl₂ and 2.0 equiv of AgOAc were used, and the reaction was performed at 100 °C.

optimized conditions for the efficient conversion of 2a to 3a. Interestingly, the reaction in $ClCH_2CH_2Cl$ (DCE) produced 34% of 3a (entry 2).

Among other Pd(II) salts screened, Pd(OAc)₂ was found to be the best; the reaction did not proceed in the absence of a catalyst.¹² Other solvents CH_2Cl_2 , $CHCl_3$, Cl_4 , THF, and DMF were inferior.¹² Surprisingly, addition of AcOH (1.0 equiv) enhanc[ed](#page-3-0) the yield of 3a to 44% (entry 3), whereas PivOH or ⁱ $PPCO₂H$ wer[e m](#page-3-0)oderate (entries 4 and 5). The use of 1.5 equive of NBS is better over 2.0 equiv of NBS (entries 6 and 7). To our delight, reaction of 2a with N-bromophthalimide (Br-2; NBP) led to 58% of 3a (entry 8), whereas 1,3-dibromo-5,5 dimethyl-imidazolidine-2,4-dione (Br-3) was ineffective (entry 9). Gratifyingly, 3a (65%) was isolated with AcOH (2.5 equiv) (entry 10); use of 5.0 equiv AcOH yielded a lower amount of 3a

(entry 11). Having the optimized conditions for the $C(sp^3)$ -H bromination in hand, we next focused on the C−H chlorination of 2a. As anticipated, N-chlorophthalimide (Cl-2; NCP) worked better than N-chlorosuccinimide (Cl-1; NCS) under the catalytic conditions in entry 10, affording 58% of 4a (entries 12 and 13). The use of $Pd(OAc)_2$ (15 mol %) led to 4a (66%) (entry 14). To our disappointment, chlorination of 2a under Yu's conditions $(CuCl₂$ and AgOAc) did not succeed (entry 15).^{6d,12} In addition, none of the notable mono- 5a−c and bicoordinated 5d−g DGs were found to be competent (Table 1).^{12,13}

The optimized conditions (entry 10, Table 1) are utilized to assess the scope and limitations [of](#page-3-0) the unprecedented β -C(sp³)–H bromination of MPyS-N-amides (Scheme 2).

^aReaction conditions: 2 (0.3 mmol), Pd(OAc)₂ (10 mol %), Br-2 (0.45 mmol), AcOH (2.5 equiv), DCE (3.0 mL) at 60−⁶⁵ °C. ^b Isolated yields. '0.25 mmol of 2e was used. ^dReaction was continued for 18 h.

The α-dialkyl and 2-methylcyclohexyl substituted MPyS-Namides 2a−e were successfully reacted with Br-2 to exclusively provide the corresponding $1^{\circ}\text{-}\beta$ -CH₂−Br products 3a−e in moderate to good yields. The brominating agent Br-2 did not even affect the reactive benzyl C−H bond, suggesting nonoccurrence of the radical intermediate.¹⁴ The Br-moiety especially inserted into the 1°-β-C−H bond affording 3f in 56% yield. The halo and other functional groups [\(C](#page-3-0)l, Br, CF_3 , and NO_2) on the aryl moiety in 2g−j did not affect the reaction outcome and survived; good yields of the desired products 3g−j were isolated. The ortho-F-substituted 2k was no exception delivering 3k in 62% yield. In contrast, the electron-rich aryl moiety in MPyS-N-amides underwent electrophilic brominations.¹²

We next explored the generality of chlorination on α -disubstituted MPyS-N-amides unde[r t](#page-3-0)he optimized conditions shown in entry 14, Table 1 (Scheme 3). A series of 1° - β -CH₂−Cl products 4a-e were readily synthesized from the α -methylalkyl bearing aliphatic acid derivatives in g[oo](#page-2-0)d yields. The chlorination on the additional β -CH₃ moiety in 4a was sluggish; however, the reaction at 80 °C allowed formation of 42% of $β, β'$ -dichloro compound 4d. As anticipated, the reagents used for chlorination did not affect the benzylic C−H bonds; a variety of chlorinated

^aReaction conditions: 2 (0.3 mmol), Pd(OAc)₂ (15 mol %), Cl-2 (0.45 mmol), AcOH (2.5 equiv), DCE (3.0 mL) at 60−⁶⁵ °C. ^b Isolated yields. 'Reaction was heated at 80 °C. ^dReaction was continued for 24 h.

products 4f-i having Br, CF_3 , or NO₂ functional groups on arenes were synthesized. To our surprise, the electron-rich p -OMe aryl and β -naphthyl moieties are inert to electrophilic chlorination, affording the desired 4j and 4k in moderate yields. The chlorination of o -fluoro benzyl α -dimethyl substituted amide gave 41 in 73% yield. The α -mono-/unsubstituted MPyS-Namides did not undergo halogenation, suggesting the requirement of dialkyls adjacent to the DG due to the Thorpe−Ingold effect;^{12,15} even the molecule having three methelyne groups $(-CH₂–)$ failed to provide the corresponding halogenated prod[uct](#page-3-0).^{[12](#page-3-0)}

Although the mechanistic details are yet to be established, we pres[um](#page-3-0)ed the participation of Pd^H and Pd^V species in this halogenation reaction (Scheme 4).¹⁶ The chelation of pyridine

Scheme 4. Proposed Catalytic Cy[cle](#page-3-0)

and the sulfoximine N-atom to the Pd^{II} species followed by activation of the C(sp³)−H of MPyS-N-amide produces [5,5]fused bicyclic cyclopalladated intermediate 6. The oxidation of the Pd 11 species with NXP delivers Pd^{IV} species 7.¹⁶ Finally, reductive elimination of 7 leads to the halogenated product 3/4. The role of AcOH in this reaction presumably is to help regenerate the active catalyst by replacing the phthalimide ligand on Pd(II).

The twofold C−H functionalizations are appealing, as it introduces identical or different functional groups in the molecule.¹⁷ Consequently, induction of different functional groups on two 1° - β - \overline{C} (sp $^3)$ –H bonds in 2,2-dimethyl carboxylic acid wou[ld](#page-3-0) infuse creating a highly functionalized quaternary carbon center. The remarkable ability of MPyS-DG assisted multiple functionalizations was thus probed executing the formation of unprecedented C−Br/Cl and C−O moieties on two β -C(sp³)–H bonds (Scheme 5).¹¹ Gratifyingly, acetoxylation

^aReaction conditions: 3 or 4 (0.25 mmol), Pd(OAc)₂ (5.0 mol %), PhI(OAc)₂ (0.37 mmol), AcOH (1.0 mL) at 50 $^{\circ}$ C. ^bIsolated yields.
Reaction was carried out with 0.20 mmol of 3i and 4l Reaction was carried out with 0.20 mmol of 3j and 4l.

of bromo-compounds 3a and 3j or alkyl chlorides 4a−b and 4l with $Pd(OAc)_2$ and $PhI(OAc)_2$ in AcOH independently produced 8a−b and 9a−c, respectively (Scheme 5), displaying the effectiveness of multiple C−H activations with the aid of a single $DG^{17,18}$

Finally, hydrolysis of the halogenated products with aqueous HBr read[ily c](#page-3-0)leaves the MPyS-DG. Thus, the desired β -halo carboxylic acids 10 (82%) and 11 (85%) were obtained from 3b and 4a, respectively, with the recovery of an appreciable amount of MPyS (Scheme 6).¹⁹

The utility of the alkyl-bromo-group in 3b is demonstrated through nucleophilic azide displacement followed by $[3 + 2]$ cycloaddition with phenyl acetylene for the fabrication of triazole 12 (eq 1).^{12,20}

In conclusion, a novel MPyS-directing-group-assisted bromin[at](#page-3-0)i[on a](#page-3-0)nd chlorination of $1^{\circ}\text{-}\beta\text{-C(sp}^{3})$ – H bonds of aliphatic acid derivatives is demonstrated for the first time. The unprecedented halogenation and acetoxylation sequence on two $β$ -CH₃ moieties provides access to highly functionalized quaternary carbon centers bearing carboxylic acids. We believe

these preliminary results will find broad synthetic utility and boost the development of novel methods for creating C−halogen moieties in the unactivated remote $C(sp^3)$ –H bonds.

■ ASSOCIATED CONTENT

S Supporting Information

Detailed experimental procedures and spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: akhilchemistry12@gmail.com; akssc@uohyd.ernet.in. **Notes**

The authors declare no competing financial interest.

B DEDICATION

Dedicated to Professor H. Ila on the occasion of her 70th birthday.

■ ACKNOWLEDGMENTS

This research was supported by the SERB, India. R.K.R., M.R.Y., K.G., and M.S. thank CSIR, India for a fellowship.

■ REFERENCES

(1) (a) Handbook of Grignard Reagents; Silverman, G. S., Rakita, P. E., Eds.; Dekker: New York, 1996. (b) Crampton, M. R. In Organic Reaction Mechanism; Knipe, A. J., Eds.; Wiley: New York, 2007. (c) Metal Catalyzed Cross Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998. (d) Topics in Organometallic Chemistry: Palladium in Organic Synthesis; Tsuji, J., Ed.; Springer: New York, 2005; pp 85−108. (e) Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693.

(2) (a) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Tsodikova, S. G.; Walsh, C. T. Chem. Rev. 2006, 106, 3364. (b) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.

(3) (a) Johnson, R. G.; Ingham, R. K. Chem. Rev. 1956, 56, 219. (b) Kochi, J. K. J. Am. Chem. Soc. 1965, 87, 2500. (c) Roberts, I.; Kimball, G. E. J. Am. Chem. Soc. 1937, 59, 947. (d) Li, Z.; Crosignani, S.; Linclau, B. Tetrahedron Lett. 2003, 44, 8143.

(4) Skell, P. S.; Traynham, J. G. Acc. Chem. Res. 1984, 17, 160.

(5) For reviews on $sp³$ C−H functionalization, see: (a) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726. (b) Li, H.; Lia, B. J.; Shi, Z. J. Catal. Sci. Technol. 2011, 1, 191. (c) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.-Eur. J. 2010, 16, 2654. (d) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (e) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (f) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439.

(6) (a) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 2112. (b) Giri, R.; Chen, X.; Hao, X.-S.; Li, J.-J.; Liang, J.; Fan, Z.-P.; Yu, J.-Q. Tetrahedron: Asymmetry 2005, 16, 3502. (c) Giri, R.; Wasa, M.; Brazzano, S. P.; Yu, J.-Q. Org. Lett. 2006, 8, 5685. (d) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058. (e) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Tetrahedron 2006, 62, 11483. (f) Stowers, K. J.; Kubota, A.; Sanford, M. S. Chem. Sci. 2012, 3, 3192.

(7) For selected examples of sp² C−H halogenation, see: (a) Sun, X.; Shan, G.; Sun, Y.; Rao, Y. Angew. Chem., Int. Ed. 2013, 52, 4440.

(b) Schröder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298. (c) Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, R. L. Angew. Chem., Int. Ed. 2011, 50, 5524. (d) Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131, 11310. (e) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215. (f) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523. (g) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416.

(8) For sp³ C−H functionalization in organic synthesis, see: (a) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (b) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976 and references cited therein.

(9) (a) Wheelaghan, O. R.; Ortuñ o, M. A.; Díez, J.; Garrido, S. E. G.; Maya, C.; Lledós, A.; Conejero, S. J. Am. Chem. Soc. 2012, 134, 15261. (b) Crosby, S. H.; Thomas, H. R.; Clarkson, G. J.; Rourke, J. P. Chem. Commun. 2012, 48, 5775. (c) Kaspi, A. W.; Goldberg, I.; Vigalok, A. J. Am. Chem. Soc. 2010, 132, 10626. (d) Oloo, W.; Zavalij, P. Y.; Zhang, J.; Khaskin, E.; Vedernikov, A. N. J. Am. Chem. Soc. 2010, 132, 14400. (e) Frech, C. M.; Milstein, D. J. Am. Chem. Soc. 2006, 128, 12434. (f) Goldberg, K. I.; Yan, J. Y.; Winter, E. L. J. Am. Chem. Soc. 1994, 116, 1573.

(10) (a) Roy, A. H.; Hartwig, J. F. Organometallics 2004, 23, 1533. (b) Canty, A. J. Acc. Chem. Res. 1992, 25, 83.

(11) (a) Rit, R. K.; Yadav, M. R.; Sahoo, A. K. Org. Lett. 2012, 14, 3724.

(b) Rit, R. K.; Yadav, M. R.; Sahoo, A. K. Org. Lett. 2014, 16, 968.

(12) For more details, see the Supporting Information.

(13) The exact role of bidentate MPyS-DG for the $C(sp^3)$ -H halogenation is not known. Both the N-atoms in MPyS-DG are sp^2 hybridized, while other bidentate DGs in $\mathsf{5d}-\mathsf{g}$ possess one sp 2 -N-atom. Although the strong binding affinity of N-atoms in 5d−g successfully activates the $C(sp^3)$ -H bond, it presumably hampers the ready reductive elimination under the optimized conditions. Whereas the weak coordination of the sulfoximine $N(sp^2)$ -atom to metal facilitates reductive elimination.

(14) Djerassi, C. Chem. Rev. 1948, 43, 271.

(15) (a) Wu, X.; Zhao, Y.; Ge, H. J. Am. Chem. Soc. 2014, 136, 1789. (b) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2014, 136, 898. (c) Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 6030.

(16) Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142. (17) (a) Li, S.; Chen, G.; Feng, C.-G.; Gong, W.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 5267. (b) Sarkar, D.; Melkonyan, F. S.; Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, 52, 10800.

(18) The acetoxylation of 3a under Yu's conditions $[Pd(OAc)]$ (5 mol %), MeCOOOtBu (2.0 equiv), Ac₂O at 65 °C for 24 h] produces 8a in 40% yield; see: Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44, 7420.

(19) (a) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502. (b) Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984.

(c) Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Nature 2012, 486, 518.

(20) Kappe, C. O.; Eycken, E. V. Chem. Soc. Rev. 2010, 39, 1280.